V = 1779.7 (2) Å³

Mo Ka radiation $\mu = 0.19 \text{ mm}^{-3}$

 $0.20 \times 0.20 \times 0.10 \text{ mm}$

10984 measured reflections

4037 independent reflections

3099 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

T = 292 (2) K

 $R_{\rm int} = 0.037$

16 restraints

 $\Delta \rho_{\rm max} = 0.49 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.44 \text{ e} \text{ Å}^{-3}$

Z = 4

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-Anilino-2-hexylsulfanyl-4,4-dimethyl-1H-imidazol-5(4H)-one

Shao-Fa Sun,^a* Yu-Lu Chen^b and Gui-Hua Li^c

^aDepartment of Chemistry and Life Science, Xianning College, Xianning 437000, People's Republic of China, ^bDepartment of Chemistry, Xianning Vocational and Technical College, Xianning 437100, People's Republic of China, and ^cDepartment of Medicinal Chemistry, Yunyang Medical College, Shiyan 442000, People's Republic of China

Correspondence e-mail: sfsun10@126.com

Received 24 September 2007; accepted 26 September 2007

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.053; wR factor = 0.157; data-to-parameter ratio = 18.2.

In the title compound, $C_{17}H_{25}N_3OS$, the mean plane of the imidazolinone system makes a dihedral angle of $83.07 (1)^{\circ}$ with the phenyl ring. The crystal packing is stabilized by intermolecular $N-H\cdots N$ and $C-H\cdots O$ hydrogen-bonding interactions. The hexyl group is disordered over two sites with approximate occupancy factors 0.7:0.3.

Related literature

Imidazolinones have been prepared and their biological activities, especially their fungicidal activities, have been studied by Khodair et al. (1998) and Bruhn et al. (1998). For related literature, see: Yuan et al., 2006.

Experimental

Crystal data

C17H25N3OS $M_r = 319.46$ Monoclinic, $P2_1/n$ a = 6.2528 (5) Å b = 14.8770 (11) Å c = 19.1740 (15) Å $\beta = 93.806 (1)^{\circ}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.964, \ T_{\max} = 0.982$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.157$ S = 1.064037 reflections 222 parameters

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -Н	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C13-H13B\cdotsO1^{i}$ $N1-H1\cdotsN3^{ii}$ $C11-H11A\cdotsO1^{iii}$	0.97	2.57	3.430 (2)	148
	0.86	2.60	3.189 (2)	126
	0.96	2.34	3.299 (3)	173

Symmetry codes: (i) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) x + 1, y, z; (iii) x - 1, y, z.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2001).

The authors gratefully acknowledge financial support of this work by the Natural Science Foundation of Hubei Province.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2411).

References

Bruhn, J. A., Crompton, M. C. & Foor, S. R. (1998). WO Patent 9 833 382.

Bruker (2001). SMART (Version 5.628) and SAINT-Plus (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA

Khodair, A. I., El-Subbagh, H. I. & Al-Obaid, A. M. (1998). Phosphorus Sulfur Silicon Relat. Elem. 140, 159-181.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Yuan, J.-Z., Chen, X.-M. & Huang, N.-Y. (2006). Acta Cryst. E62, 0717-0718.

Acta Cryst. (2007). E63, 04219 [doi:10.1107/S1600536807047228]

1-Anilino-2-hexylsulfanyl-4,4-dimethyl-1*H*-imidazol-5(4*H*)-one

S.-F. Sun, Y.-L. Chen and G.-H. Li

Comment

Imidazolinones are important heterocycles exhibiting remarkable biological activities, especially fungicidal activities (Khodair *et al.*, 1998). Since a novel mitochondrial respiratory inhibitor (Fenamidone) was found to show high fungicidal activities, many other 2-alkylthio imidazolinones have been synthesized to evaluate their fungicidal activities (Bruhn *et al.*, 1998). We obtained the title compound, (I), which may be used as a new precursor for obtaining bioactive molecules. The crystal structure of (I) is presented here.

Atom S1, N1 and the five-membered imidazolone ring are essentially planar. The C16 and C17 atoms, and the hydrogen atoms attached to C15, C16 and C17 are disordered over two sites, with refined occupancies of 0.309 (7) and 0.691 (7) (Fig. 1). The bond lengths involving atom C9 indicate a degree of electron delocalization (Yuan *et al.*, 2006). As can be seen from the packing diagram (Fig. 2), intermolecular N—H···N and C—H···O hydrogen bondings (Table 1) link the molecules.

Experimental

A mixture of 5,5-dimethyl-3-phenylamino-2-thioxo-4-imidazolidione (0.71 g, 3 mmol), hexyl bromide (0.50 g, 3 mmol) and solid potassium carbonate (0.83 g, 6 mmol) in CH_3CN (15 ml) was stirred for 5 h at 323 K and was filtered. The filtrate was condensed, and the residue was recrystallized from diethyl ether and petroleum ether (1:3) to give the title compound (I) in yield of 83% (m.p. 355 K). Suitable crystals were obtained by slow evaporation of a solution of (I) in dichloromethane and petroleum ether at room temperature.

Refinement

All H atoms were located in difference maps and treated as riding atoms, except those at N1, with the following distance restraints: C—H = 0.93 Å, $U_{iso} = 1.2U_{eq}(C)$ for Csp^2 , C—H = 0.97 Å, $U_{iso} = 1.2U_{eq}(C)$ for CH₂, N—H = 0.86 Å, $U_{iso} = 1.2U_{eq}(N)$ for NH₂, C—H = 0.96 Å, $U_{iso} = 1.5U_{eq}(C)$ for CH₃.

Figures

Fig. 1. The molecular structure of the title compound, showing the atom-labeling scheme. Only the major disorder component is shown.

Fig. 2. The packing in the crystal structure, showing the N—H…N and C—H…O hydrogen bonds as dashed lines.

1-Anilino-2-hexylsulfanyl-4,4-dimethyl-1*H*-imidazol-5(4*H*)-one

Crystal data	
C ₁₇ H ₂₅ N ₃ OS	$F_{000} = 688$
$M_r = 319.46$	$D_{\rm x} = 1.192 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 3820 reflections
a = 6.2528 (5) Å	$\theta = 2.5 - 27.4^{\circ}$
b = 14.8770 (11) Å	$\mu = 0.19 \text{ mm}^{-1}$
c = 19.1740 (15) Å	T = 292 (2) K
$\beta = 93.8060 \ (10)^{\circ}$	Block, colourless
$V = 1779.7 (2) \text{ Å}^3$	$0.20 \times 0.20 \times 0.10 \text{ mm}$
Z = 4	

Data collection

Bruker SMART CCD area-detector diffractometer	4037 independent reflections
Radiation source: fine-focus sealed tube	3099 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.037$
T = 292(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -8 \rightarrow 5$
$T_{\min} = 0.964, \ T_{\max} = 0.982$	$k = -19 \rightarrow 17$
10984 measured reflections	$l = -21 \rightarrow 24$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.053$	H-atom parameters constrained
$wR(F^2) = 0.157$	$w = 1/[\sigma^2(F_o^2) + (0.0936P)^2 + 0.0291P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.06	$(\Delta/\sigma)_{max} < 0.001$

4037 reflections

 $\Delta \rho_{\text{max}} = 0.49 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.44 \text{ e } \text{\AA}^{-3}$

222 parameters16 restraints

Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
N1	1.0843 (2)	0.63981 (9)	0.23056 (7)	0.0404 (3)	
H1	1.1701	0.6276	0.1986	0.049*	
N2	0.8961 (2)	0.68754 (9)	0.21568 (8)	0.0401 (3)	
N3	0.5428 (2)	0.70044 (9)	0.18400 (8)	0.0444 (4)	
01	0.9892 (2)	0.82995 (9)	0.25323 (9)	0.0652 (4)	
S1	0.72154 (8)	0.53663 (3)	0.16269 (3)	0.04854 (19)	
C1	0.9848 (3)	0.62221 (14)	0.35171 (11)	0.0550 (5)	
H1A	0.8532	0.6499	0.3412	0.066*	
C2	1.0374 (4)	0.59096 (16)	0.41849 (12)	0.0708 (7)	
H2	0.9403	0.5982	0.4528	0.085*	
C3	1.2297 (4)	0.54941 (17)	0.43532 (12)	0.0732 (7)	
H3	1.2634	0.5287	0.4805	0.088*	
C4	1.3712 (4)	0.53891 (16)	0.38448 (13)	0.0697 (7)	
H4	1.5020	0.5107	0.3953	0.084*	
C5	1.3226 (3)	0.56953 (14)	0.31739 (11)	0.0543 (5)	
Н5	1.4202	0.5615	0.2834	0.065*	
C6	1.1288 (3)	0.61219 (11)	0.30042 (9)	0.0408 (4)	
C7	0.8579 (3)	0.77681 (11)	0.23033 (10)	0.0449 (4)	
C8	0.6195 (3)	0.78913 (11)	0.21235 (11)	0.0498 (5)	
C9	0.7054 (3)	0.64835 (11)	0.18752 (8)	0.0374 (4)	
C10	0.5790 (4)	0.86296 (15)	0.15830 (15)	0.0820 (8)	
H10A	0.6386	0.8457	0.1154	0.123*	
H10B	0.6453	0.9177	0.1752	0.123*	
H10C	0.4274	0.8722	0.1501	0.123*	
C11	0.5136 (3)	0.80949 (17)	0.28010 (15)	0.0739 (7)	
H11A	0.3634	0.8203	0.2699	0.111*	
H11B	0.5787	0.8618	0.3018	0.111*	

H11C	0.5320	0.7591	0.3112	0.111*	
C12	0.4533 (3)	0.51978 (13)	0.12390 (11)	0.0532 (5)	
H12A	0.3519	0.5205	0.1600	0.064*	
H12B	0.4164	0.5681	0.0913	0.064*	
C13	0.4406 (3)	0.43057 (12)	0.08595 (10)	0.0483 (5)	
H13A	0.5435	0.4302	0.0503	0.058*	
H13B	0.4789	0.3827	0.1188	0.058*	
C14	0.2194 (3)	0.41275 (14)	0.05226 (11)	0.0574 (5)	
H14A	0.1164	0.4183	0.0877	0.069*	
H14B	0.1864	0.4589	0.0175	0.069*	
C15	0.1907 (4)	0.32247 (14)	0.01789 (13)	0.0706 (7)	
H15A	0.2309	0.2754	0.0512	0.085*	0.691 (7)
H15B	0.2826	0.3179	-0.0208	0.085*	0.691 (7)
H15C	0.1875	0.2791	0.0556	0.085*	0.309 (7)
H15D	0.3216	0.3110	-0.0050	0.085*	0.309 (7)
C16	-0.0461 (7)	0.3103 (3)	-0.0092 (3)	0.0754 (15)	0.691 (7)
H16A	-0.1365	0.3178	0.0296	0.091*	0.691 (7)
H16B	-0.0834	0.3571	-0.0431	0.091*	0.691 (7)
C17	-0.0929 (7)	0.2202 (3)	-0.0426 (3)	0.0909 (17)	0.691 (7)
H17A	0.0061	0.2093	-0.0779	0.136*	0.691 (7)
H17B	-0.2366	0.2198	-0.0636	0.136*	0.691 (7)
H17C	-0.0778	0.1740	-0.0077	0.136*	0.691 (7)
C16'	0.0146 (17)	0.2957 (9)	-0.0348 (5)	0.081 (4)	0.309 (7)
H16C	-0.0410	0.3465	-0.0620	0.097*	0.309 (7)
H16D	0.0589	0.2487	-0.0658	0.097*	0.309 (7)
C17'	-0.141 (2)	0.2625 (10)	0.0151 (7)	0.120 (5)	0.309 (7)
H17D	-0.0639	0.2387	0.0561	0.179*	0.309 (7)
H17E	-0.2283	0.2161	-0.0068	0.179*	0.309 (7)
H17F	-0.2304	0.3112	0.0283	0.179*	0.309 (7)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0312 (7)	0.0454 (8)	0.0447 (8)	0.0094 (6)	0.0031 (6)	-0.0019 (6)
N2	0.0296 (7)	0.0379 (7)	0.0524 (9)	0.0038 (6)	-0.0010 (6)	-0.0040 (6)
N3	0.0350 (8)	0.0358 (7)	0.0613 (9)	0.0019 (6)	-0.0054 (7)	-0.0079 (6)
01	0.0362 (8)	0.0492 (8)	0.1091 (12)	-0.0066 (6)	-0.0028 (7)	-0.0211 (8)
S 1	0.0460 (3)	0.0359 (3)	0.0621 (3)	0.00756 (19)	-0.0089 (2)	-0.00951 (19)
C1	0.0502 (12)	0.0572 (12)	0.0587 (12)	0.0017 (9)	0.0111 (9)	-0.0004 (9)
C2	0.0889 (19)	0.0719 (15)	0.0536 (13)	-0.0121 (13)	0.0192 (12)	0.0029 (11)
C3	0.0871 (19)	0.0748 (15)	0.0557 (13)	-0.0169 (13)	-0.0106 (13)	0.0155 (11)
C4	0.0591 (14)	0.0749 (15)	0.0725 (15)	-0.0030 (11)	-0.0150 (11)	0.0225 (11)
C5	0.0407 (11)	0.0651 (12)	0.0566 (11)	0.0042 (9)	-0.0002 (9)	0.0090 (9)
C6	0.0364 (9)	0.0386 (9)	0.0470 (10)	-0.0065 (7)	-0.0007 (7)	-0.0020 (7)
C7	0.0344 (9)	0.0395 (9)	0.0608 (11)	-0.0001 (7)	0.0028 (8)	-0.0047 (8)
C8	0.0337 (9)	0.0358 (9)	0.0786 (13)	0.0024 (7)	-0.0053 (9)	-0.0123 (8)
C9	0.0362 (9)	0.0354 (8)	0.0401 (9)	0.0006 (7)	-0.0005 (7)	-0.0026 (7)
C10	0.0710 (16)	0.0419 (11)	0.129 (2)	0.0058 (11)	-0.0260 (15)	0.0086 (12)

C11	0.0382(11)	0.0704 (14)	0 11/3 (19)	-0.0057(10)	0.0140 (11)	-0.0458(13)
C12	0.0362(11) 0.0461(11)	0.0704(14) 0.0480(10)	0.1149(17) 0.0640(17)	0.0049 (8)	-0.0088(9)	-0.0175(9)
C13	0.0530(12)	0.0397 (9)	0.0513(11)	0.0012 (8)	-0.0042(8)	-0.0066(8)
C14	0.0530(12)	0.0577(5)	0.0513(11) 0.0658(13)	-0.0012(3)	-0.0042(3)	-0.0104(9)
C15	0.0324(12) 0.0780(17)	0.0525(11)	0.0038(13)	-0.0100(11)	-0.0187(12)	-0.0076(10)
C15	0.0780(17)	0.0515(12)	0.0792(10)	-0.005(2)	-0.009(2)	-0.028(3)
C10	0.000(3)	0.008(3)	0.090(4)	-0.005(2)	-0.003(2)	-0.018(3)
C17	0.085(3)	0.078 (5)	0.100(3)	-0.016(5)	0.023(2)	-0.018(2)
C10 C17'	0.105(7)	0.081(0)	0.039(3)	-0.010(3)	0.000(3)	-0.018(4)
	0.116 (9)	0.102 (9)	0.144 (10)	-0.019(7)	0.035 (8)	-0.007 (8)
Geometric paran	neters (Å, °)					
N1—N2		1 3878 (18)	C11—I	H11C	0.960)0
N1—C6		1.411 (2)	C12—(C13	1.513	3 (2)
N1—H1		0.8600	C12—1	H12A	0.970)0
N2—C7		1.382 (2)	C12—1	H12B	0.970)0
N2-C9		1 403 (2)	C13—(214	1 51() (3)
N3—C9		1.105 (2)	C13—1	H13A	0.970)()
N3—C8		1 494 (2)	C13—1	H13B	0.970)0
01-07		1.191(2) 1.202(2)	C14—(215	1.502	2 (3)
S1—C9		1,7337 (16)	C14—1	H14A	0.970)0
S1-C12		1 8063 (19)	C14—1	H14B	0.970)0
C1-C2		1 381 (3)	C15—(C16'	1 497	7 (7)
C1 - C6		1 385 (2)	C15-0	C16	1.197	7 (4)
C1—H1A		0.9300	C15—	H15A	0.970)0
$C^2 - C^3$		1 372 (3)	C15—1	H15R	0.970)0
С2—Н2		0.9300	C15—1	H15C	0.970)0
$C_2 = C_4$		1 368 (4)	C15—1	H15D	0.970)0
С3—Н3		0.9300	C16-	~17	1.506	50 5 (5)
C4-C5		1 379 (3)	C16—1	H16A	0.970)())
C4—H4		0.9300	C16	H16R	0.970)0
C5-C6		1 388 (3)	C17-1	H17A	0.960	0
C5-H5		0.9300	C17	H17R	0.960	0
C7-C8		1.519(2)	C17	H17C	0.960	0
$C_{7} = C_{8}$		1.519(2) 1.520(3)	C16'	C17'	1 493	3 (8)
C8-C11		1.520(3)	C16'	H16C	0.97)(0)
C10_H10A		0.9600	C16'	H16D	0.970	0
C10_H10B		0.9600	C17'	H17D	0.960	0
C10—H10C		0.9600	C17'-	H17E	0.960	0
C11_H11A		0.9600	C17'	H17E	0.960	0
C11H11B		0.9600	017	111 / 1	0.900	
N2—N1—C6		117.06(13)	S1—C	12—H12B	109 3	7
N2N1H1		121.5	H12A_	_C12H12B	109.1	,
C6_N1_H1		121.5	C14	13-012	110.2	6 (15)
C7 N2 N1		127.29 (14)	C14-	C13—H13A	100 2)
C7 - N2 - C9		108 89 (14)	C12	~13H13A	109.2	-)
N1_N2_C9		123 64 (13)	C12	~13H13R	109.2	-)
(9-N3-C8)		106 38 (14)	C_{1}	°13H13B	109.2	2
$C9_{113}_{-C12}$		100.38 (14)	U12-4	_C13H13P	109.2	-
07 51-012		100.10 (0)	III3A-	C15 -1115D	107.5	·

C2—C1—C6	119.7 (2)	C15-C14-C13	115.09 (18)
C2—C1—H1A	120.1	C15-C14-H14A	108.5
С6—С1—Н1А	120.1	C13—C14—H14A	108.5
C3—C2—C1	121.4 (2)	C15—C14—H14B	108.5
С3—С2—Н2	119.3	C13—C14—H14B	108.5
C1—C2—H2	119.3	H14A—C14—H14B	107.5
C4—C3—C2	118.8 (2)	C16'—C15—C14	126.5 (6)
С4—С3—Н3	120.6	C16'-C15-C16	25.6 (4)
С2—С3—Н3	120.6	C14—C15—C16	109.6 (2)
C3—C4—C5	120.9 (2)	C16'—C15—H15A	113.6
C3—C4—H4	119.5	C14—C15—H15A	109.7
С5—С4—Н4	119.5	C16-C15-H15A	109.7
C4—C5—C6	120.3 (2)	C16'—C15—H15B	85.0
С4—С5—Н5	119.8	C14—C15—H15B	109.7
С6—С5—Н5	119.8	С16—С15—Н15В	109.7
C1—C6—C5	118.79 (18)	H15A—C15—H15B	108.2
C1—C6—N1	123.13 (17)	C16'—C15—H15C	106.0
C5—C6—N1	118.02 (16)	C14—C15—H15C	106.0
O1—C7—N2	125.69 (16)	C16—C15—H15C	96.1
O1—C7—C8	129.81 (16)	H15A—C15—H15C	17.5
N2—C7—C8	104.49 (14)	H15B—C15—H15C	124.4
N3—C8—C7	105.20 (13)	C16'—C15—H15D	104.6
N3—C8—C10	110.81 (17)	C14—C15—H15D	106.0
C7—C8—C10	111.01 (17)	C16—C15—H15D	130.2
N3—C8—C11	109.76 (16)	H15A—C15—H15D	88.9
C7—C8—C11	107.78 (17)	H15B—C15—H15D	23.2
C10—C8—C11	112.01 (19)	H15C—C15—H15D	106.3
N3—C9—N2	114.94 (14)	C17—C16—C15	113.7 (3)
N3—C9—S1	128.92 (13)	C17—C16—H16A	108.8
N2—C9—S1	116.14 (12)	C15—C16—H16A	108.8
C8—C10—H10A	109.5	C17—C16—H16B	108.8
C8—C10—H10B	109.5	C15—C16—H16B	108.8
H10A—C10—H10B	109.5	H16A—C16—H16B	107.7
C8—C10—H10C	109.5	C17'—C16'—C15	97.8 (8)
H10A—C10—H10C	109.5	C17'—C16'—H16C	112.2
H10B—C10—H10C	109.5	C15—C16'—H16C	112.2
C8—C11—H11A	109.5	C17'—C16'—H16D	112.2
C8—C11—H11B	109.5	C15—C16'—H16D	112.2
H11A—C11—H11B	109.5	H16C—C16'—H16D	109.8
C8—C11—H11C	109.5	C16'—C17'—H17D	109.5
H11A—C11—H11C	109.5	C16'—C17'—H17E	109.5
H11B—C11—H11C	109.5	H17D—C17'—H17E	109.5
C13—C12—S1	109.73 (13)	C16'C17'H17F	109.5
C13—C12—H12A	109.7	HT/D—CT/—HT/F	109.5
S1—C12—H12A	109.7	H1/E—C1/—H1/F	109.5
C13—C12—H12B	109.7		
C6—N1—N2—C7	76.7 (2)	O1—C7—C8—C10	58.3 (3)
C6—N1—N2—C9	-97.85 (18)	N2—C7—C8—C10	-122.80 (18)
C6—C1—C2—C3	-0.4 (3)	O1—C7—C8—C11	-64.7 (3)

C1—C2—C3—C4	-0.1 (4)	N2-C7-C8-C11	114.19 (17)
C2—C3—C4—C5	0.1 (4)	C8—N3—C9—N2	0.3 (2)
C3—C4—C5—C6	0.4 (4)	C8—N3—C9—S1	-179.96 (14)
C2-C1-C6-C5	0.9 (3)	C7—N2—C9—N3	-2.3 (2)
C2-C1-C6-N1	178.00 (18)	N1—N2—C9—N3	173.08 (15)
C4—C5—C6—C1	-0.9 (3)	C7—N2—C9—S1	177.90 (12)
C4-C5-C6-N1	-178.14 (18)	N1—N2—C9—S1	-6.7 (2)
N2—N1—C6—C1	7.0 (2)	C12—S1—C9—N3	5.03 (19)
N2—N1—C6—C5	-175.88 (15)	C12—S1—C9—N2	-175.25 (13)
N1—N2—C7—O1	6.9 (3)	C9—S1—C12—C13	169.55 (14)
C9—N2—C7—O1	-177.93 (19)	S1-C12-C13-C14	-179.94 (14)
N1—N2—C7—C8	-172.10 (15)	C12-C13-C14-C15	-175.90 (19)
C9—N2—C7—C8	3.10 (19)	C13—C14—C15—C16'	-162.4 (5)
C9—N3—C8—C7	1.6 (2)	C13-C14-C15-C16	175.6 (3)
C9—N3—C8—C10	121.66 (19)	C16'-C15-C16-C17	46.1 (12)
C9—N3—C8—C11	-114.11 (18)	C14—C15—C16—C17	-178.1 (4)
O1—C7—C8—N3	178.2 (2)	C14—C15—C16'—C17'	-89.9 (9)
N2—C7—C8—N3	-2.88 (19)	C16—C15—C16'—C17'	-35.1 (10)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A
C13—H13B···O1 ⁱ	0.97	2.57	3.430 (2)	148
N1—H1···N3 ⁱⁱ	0.86	2.60	3.189 (2)	126
C11—H11A···O1 ⁱⁱⁱ	0.96	2.34	3.299 (3)	173

Symmetry codes: (i) -*x*+3/2, *y*-1/2, -*z*+1/2; (ii) *x*+1, *y*, *z*; (iii) *x*-1, *y*, *z*.

